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SUMMARY

A numerical model is presented for the simulation of complex �uid �ows with free surfaces in three
space dimensions. The model described in Maronnier et al. (J. Comput. Phys. 1999; 155(2):439) is
extended to three dimensional situations. The mathematical formulation of the model is similar to that
of the volume of �uid (VOF) method, but the numerical procedures are di�erent.
A splitting method is used for the time discretization. At each time step, two advection problems—

one for the predicted velocity �eld and the other for the volume fraction of liquid—are to be solved.
Then, a generalized Stokes problem is solved and the velocity �eld is corrected. Two di�erent grids
are used for the space discretization. The two advection problems are solved on a �xed, structured grid
made out of small cubic cells, using a forward characteristic method. The generalized Stokes problem
is solved using continuous, piecewise linear stabilized �nite elements on a �xed, unstructured mesh of
tetrahedrons.
The three-dimensional implementation is discussed. E�cient postprocessing algorithms enhance the

quality of the numerical solution. A hierarchical data structure reduces memory requirements.
Numerical results are presented for complex geometries arising in mold �lling. Copyright ? 2003

John Wiley & Sons, Ltd.
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1. INTRODUCTION

Industrial processes such as casting, injection or extrusion involve complex free surface
phenomena that can nowadays be solved numerically using commercial codes. In three-
dimensional situations, the motion of the free surface is generally too complex to be handled
by front-tracking [1] or Lagrangian methods [2–4]. The Arbitrary Lagrangian–Eulerian method
is also di�cult to implement since the selection of the mesh velocity is nontrivial for complex
�ows.
An alternative is to consider an Eulerian approach, which consists in using a �xed mesh

but adding an unknown function ’. The function ’ can be for instance, the volume fraction
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of liquid (the liquid characteristic function) or the pseudo-concentration of liquid. Since the
interface moves with the �uid, ’ must satisfy the following advection equation

@’
@t
+ v · ∇’ = 0

where v is the velocity �eld of the �uid. When two-phase �ows are considered, the velocity
�eld v is computed in the whole cavity (liquid and gas for instance), thus level set tech-
niques [5, 6] or the pseudo-concentration method [7–12] can be applied. Then, the function ’
is smooth, for instance positive in the liquid, negative in the gas and the interface corresponds
to the zero level set.
In mould �lling applications, the dynamics of the gas surrounding the liquid are not essential

to describe the free surface, and the velocity �eld v can be computed only in the liquid region
of the cavity. Moreover, the surface tension e�ects can be neglected at �rst order. Then, the
function ’ corresponds to the volume fraction of liquid, has value one in the liquid region,
zero in the surrounding gas and jumps across the interface. The most famous numerical
implementation of this model is the so-called Volume Of Fluid (VOF) method, which was
originally devised for �nite volumes [13] and recently extended to �nite elements [14]. The
major di�culty in solving this problem is then due to the fact that the volume fraction of
liquid ’ is discontinuous across the interface, thus numerical di�usion must be reduced as
much as possible.
In this paper, eventhough we follow the mathematical formulation of the VOF method, the

numerical treatment of the model is di�erent. An implicit splitting algorithm is used to de-
couple advection and di�usion phenomena. Then, these two phenomena are solved using two
di�erent grids. Advection phenomena (including the motion of the volume fraction of liquid
and the prediction of the �uid velocity) are solved using a �xed, structured grid of cubic cells
and a forward characteristic method. On the other hand, di�usion phenomena (more precisely
a generalized Stokes problem) are solved using continuous, piecewise linear stabilized �nite
element techniques on a �xed, unstructured mesh of tetrahedrons. The features are then the
following. Because of the implicit character of the splitting scheme, the method is uncondi-
tionally stable with respect to the Courant-Friedrichs-Lewy (CFL) condition. Moreover, since
two di�erent grids are used for di�usion and advection, numerical di�usion in the volume
fraction of liquid ’ can be reduced by using a smaller grid for advection than for di�usion.
Numerical results in two space dimensions have already been presented in Reference [15].
The goal of this paper is to extend the model to three-dimensional situations.
The structure of the paper is the following. In the next section, the governing equations and

boundary conditions are presented. In the third section our splitting algorithm is proposed. The
fourth section is devoted to the details of the three dimensional implementation. In Section 5,
numerical simulations are presented.

2. THE MATHEMATICAL MODEL

2.1. Governing equations

The model presented in this section mainly corresponds to the one presented in the original
VOF method [13]. However, as this will be explained in Sections 3 and 4, the numerical
treatment of the model is di�erent.
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Figure 1. Calculation domain for the broken dam problem in a con�ned domain. At initial time, the �uid
is at rest on the left part of the cavity. It is then free to move and hits the boundary.

Let � be a cavity of R3 in which the �uid must be con�ned, and let T¿0 be the �nal time
of the simulation. For any given time t, let �(t) denote the region occupied by the liquid.
Finally, let QT be the space–time domain containing the liquid and let �T be the space–time
free surface between the liquid and the surrounding gas. The notations are reported in Figure 1
in the frame of a two dimensional situation, namely the broken dam problem in a con�ned
domain.
The velocity �eld v :QT →R3 and the pressure �eld p :QT →R are assumed to satisfy

the time-dependent, incompressible Navier-Stokes equations in conservative form and in the
presence of a gravity �eld g; that is,

�
@v
@t
+ �(v · ∇)v − 2� divD(v) +∇p=�g in QT (1)

div v=0 in QT (2)

where D(v)= 1
2(∇v+∇vT) is the rate of deformation tensor.

Let ’ : �× [0; T ]→R be the volume fraction of liquid. The function ’ equals one if liquid
is present and zero if it is not. Since the interface moves with the liquid, the function ’ must
satisfy (in a weak sense)

@’
@t
+ v · ∇’=0 on �T (3)

From a Lagrangian point of view, the function ’ is constant along the trajectories of the
�uid particles. More precisely, ’(X (t); t)=’(X (0); 0), where X (t) is the trajectory of a �uid
particle, thus X ′(t)= v(X (t); t).
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2.2. Initial and boundary conditions

The initial conditions are the following. At initial time, the volume fraction of liquid ’(·; 0)
is given, which de�nes the liquid region at initial time,

�(0)= {x ∈ �;’(x; 0)=1}
see Figure 1 for notations. The initial velocity �eld v is then prescribed in �(0). Let us now
turn to the boundary conditions for the velocity �eld. It is assumed that no forces are acting
on the free surface (capillary forces and forces due to external pressure of the surrounding
gas are neglected); thus the stress is zero on the free surface,

−pn+ 2�D(v)n=0 on �T (4)

where n is the outward unit normal of the free surface. On the boundary of the liquid region
being in contact with the walls (that is to say the boundary of �; see Figure 1), two cases
can be considered. The �rst case, namely Dirichlet boundary conditions, corresponds to noslip
or in�ow conditions, the three components of the velocity being imposed. In the second case,
slip or zero force boundary conditions apply, according to the �ow. More precisely, if the
�uid pushes against the wall, then slip boundary conditions are imposed; that is, zero normal
velocity and zero tangent stress

if (−pn+ 2�D(v)n) · n¡0 then v · n=0 and (−pn+ 2�D(v)n) · ti=0; i=1; 2

where ti, i=1; 2, are two unit vectors orthogonal to n. On the other side, if the �uid does
not push against the wall, then the stress is zero:

if (−pn+ 2�D(v)n) · n¿0 then − pn+ 2�D(v)n=0

We have considered this kind of boundary condition in order to prevent the �uid sticking
onto the walls.
Let us brie�y comment the zero force condition, Equation (4). Consider the situation of

Figure 2, namely the �lling of a two-dimensional S-shaped cavity (the experiment is described
in Reference [15]). When �lling the cavity with liquid, the air between the valve and the liquid
can escape, thus condition (4) applies on the upper part of the liquid–air interface. However,
since a fraction of the air is trapped by the liquid and cannot escape, a resulting force acts
on the lower part of the liquid–air interface, this being not considered in our model.

3. TIME DISCRETIZATION: AN IMPLICIT SPLITTING ALGORITHM

A splitting algorithm is used to solve problem (1)–(3), allowing advection and di�usion
phenomena to be decoupled.
Let 0= t0¡t1¡t2¡ · · ·¡tN =T be a subdivision of the time interval [0; T ], de�ne �n=

tn − tn−1 the nth time step, n=1; 2; : : : ; N , � the largest time step. Given an integer n, assume
that approximations ’n−1, vn−1, �n−1 of ’(tn−1), v(tn−1), �(tn−1) respectively, are available.
Then ’n, vn, �n are computed by means of a splitting algorithm. Firstly, two advection
problems are solved, leading to a prediction of the new velocity vn−1=2 together with the
new volume of fraction ’n, which allows the new computational domain �n to be de�ned.
Secondly, a generalized Stokes problem is solved and the velocity vn is obtained in �n.
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Figure 2. Filling of an S-shaped cavity. The air in the upper part of the cavity is
free to escape from the valve. The air trapped by the liquid may exert a force on the

liquid, this being neglected in our model.

3.1. Advection step

Solve between time tn−1 and tn the two advection problems

@w
@t
+ (w · ∇)w=0

@ 
@t
+ w · ∇ =0

with initial conditions

w(tn−1) = vn−1

 (tn−1) =’n−1

If the e�ect of the boundary of the cavity � is not considered, these two problems can be
solved exactly, using the method of Characteristics [16–20], the trajectories of the velocity
�eld w being straight lines. Indeed, the trajectories are given by X ′(t)=w(X (t); t), but since
w is constant along the trajectories, we have X ′(t)=w(X (tn−1); tn−1)= vn−1(X (tn−1)). Let
vn−1=2 denote the solution of the �rst advection problem at time tn (vn−1=2 is a prediction of
the velocity �eld), vn−1=2 =w(tn). Let ’n denote the solution of the second advection problem
at time tn, i.e. ’n=  (tn). We thus have

vn−1=2(x + �nvn−1(x)) = vn−1(x) (5)

’n(x + �nvn−1(x)) =’n−1(x) (6)
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for all x belonging to �n−1. Once ’n is known in the cavity �, then the liquid region at time
tn is de�ned by:

�n= {y ∈ �;’n(y)=1}

3.2. Di�usion step

It remains to solve the following generalized Stokes problem:

�
vn − vn−1=2

�n
− 2� divD(vn) +∇pn=�g in �n (7)

div vn=0 in �n (8)

with the boundary conditions described in Section 2.2 (Dirichlet, slip, or zero force boundary
conditions).
In the simple case when the free surface problem is disregarded (’=1 everywhere in the

cavity), then this splitting is closely linked to the so-called Characteristics-Galerkin method
[16–18]. The major di�erence comes from the fact that, in the Characteristics-Galerkin method,
the trajectories of the �uid particles are computed in the direction opposite to the �ow, whereas
our method computes them in the �ow direction. Thus, we expect our algorithm to be O(�)
convergent without any stability restrictions on the time step.

4. SPACE DISCRETIZATION AND IMPLEMENTATION

Since advection and di�usion phenomena are now decoupled, two distinct grids can be used.
Finite element techniques are well suited for solving (7), (8) on an unstructured mesh of
the cavity containing the liquid. Indeed, the use of �nite elements for mould �lling applica-
tions is important since the shape of industrial moulds may be very complex (engine carters,
turbine blades; : : :). On the other hand, a structured grid of cubic cells is used to implement
(5) and (6).

4.1. Advection step

Assume that the grid is made out of cubic cells of size h, each cell being labelled by indices
(ijk). Let ’n−1

ijk and vn−1ijk be the approximate value of ’ and v at the centre of cell number
(ijk) at time tn−1. According to (5) and (6), the advection step on cell number (ijk) consists
in advecting ’n−1

ijk and vn−1ijk by �nvn−1ijk and then projecting the values on the structured grid.
An example of cell advection and projection is presented in Figure 3 in two space dimensions.
This advection algorithm is unconditionally stable with respect to the Courant-Friedrichs-

Lewy (CFL) condition, and O(� + h2=�) convergent, according to the theoretical results
available for the Characteristics-Galerkin method [16–18]. However, this algorithm has two
drawbacks. Indeed, numerical di�usion is introduced when projecting the values of the ad-
vected cells on the grid (remember that the volume fraction of liquid is discontinuous across
the interface). Moreover, if the time step is too large, two cells may arrive at the same place,
producing numerical (arti�cial) compression.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:697–716
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Figure 3. An example of two dimensional advection of ’n−1
ij by �nvn−1ij , and projection on the grid. The

advected cell is represented by the dashed lines. The four cells containing the advected cell receive a
fraction of ’n−1

ij , according to the position of the advected cell.

In order to enhance the quality of the volume fraction of liquid, two postprocessing proce-
dures have been implemented, see also Reference [15] for a description in two space dimen-
sions. The �rst procedure reduces numerical di�usion and is a simpli�ed three-dimensional
implementation of the simple linear interface calculation (SLIC) algorithm [21, 22]. The sec-
ond procedure removes arti�cial compression using a quick sort algorithm.

4.1.1. Reducing numerical di�usion: a SLIC algorithm. Consider cell number (ijk) being
partially �lled with liquid (this results from numerical di�usion), let ’n−1

ijk be the corresponding
volume fraction of liquid, this value being less than one. Instead of advecting ’n−1

ijk and then
projecting on the grid, the liquid is �rst pushed on the sides of the cell, then it is advected
and projected on the grid. A two-dimensional example is reported in Figure 4.
The critical point is then to decide how to push the volume fraction of liquid in a

given cell along the sides of this cell. For a given cell, the choice depends on the vol-
ume fraction of liquid of the neighbours, see Figure 5 for an example in a two-dimensional
situation.
In the original two-dimensional SLIC algorithm [21, 22], the number of possible cases was

34 =81, in three space dimensions it should be 36 =729, which is not reasonable. Therefore
a simpli�ed three-dimensional version of the algorithm has been implemented. The volume
fraction of liquid in a given cell can be pushed according to the neighbours in three di�erent
manners: along a face, along an edge, or against a vertex. The 28 positions of the liquid

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:697–716
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Figure 4. E�ect of the SLIC algorithm on numerical di�usion. An example of two dimensional advection
and projection when the volume fraction of liquid in the cell is ’n−1

ij = 1
4 . Left: without SLIC, the volume

fraction of liquid is advected and projected on four cells, with contributions (from top to bottom)
1
4
3
16 ,

1
4
1
16 ,

1
4
9
16 ,

1
4
3
16 . Right: with SLIC, the volume fraction of liquid is pushed at one corner, then it
is advected and projected on one cell only, with contribution 1

4 .

Figure 5. SLIC algorithm. The volume fraction of liquid in a cell partially �lled with liquid is pushed
according to the volume fraction of liquid of the neighbouring cells. Two examples are proposed. Left:
the left and bottom neighbouring cells are full of liquid, the right and top neighbouring cells are empty,
the liquid is pushed at the bottom left corner of the cell. Right: the bottom neighbouring cell is full of
liquid, the right neighbouring cell is empty, the other two neighbouring cells are partially �lled with

liquid, the volume fraction of liquid is pushed along the left side of the cell.

within a cell are shown in Figure 6. The last two positions are not considered in the three-
dimensional SLIC algorithm although they were in the original two-dimensional one. The
full description of the algorithm is available in Reference [23] and we present hereafter the
algorithm pertaining to only one of the 28 possible positions.
The situation of Figure 7 is considered. Let (i; j; k) be the indices of a cell partially �lled

with liquid, thus 0¡’n−1
ijk ¡1. We shall say that two cells are in the same state if they are

both full of liquid (the volume fraction of liquid is one), both free of liquid (the volume
fraction of liquid is zero), or both partially �lled with liquid (the volume fraction of liquid

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:697–716
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Figure 6. SLIC algorithm. Position of the liquid (shaded region) in a cubic cell partially �lled. The
volume fraction of liquid is pushed along a face, an edge, or a vertex of the cell according to the
neighbours volume fraction of liquid. The possible number of positions is 28. In the �rst two �gures, the
cell is full of liquid or empty. The last two �gures represent positions considered in the two-dimensional

implementation, but discarded in the three dimensional one.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:697–716
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Figure 7. SLIC algorithm: an example. Cell (i; j; k) is partially �lled with liquid. The liquid is pushed
as in the �gure when conditions (9) or (10) are satis�ed.

is between zero and one). Then, the liquid in cell (i; j; k) is pushed as in Figure 7 if

’n−1
i−1jk¡1 and ’n−1

i+1jk =1

the cells (i; j − 1; k) and (i; j + 1; k) are in the same state (9)

the cells (i; j; k − 1) and (i; j; k + 1) are in the same state

or if

’n−1
i−1jk =0 and ’n−1

i+1jk¿0

the cells (i; j − 1; k) and (i; j + 1; k) are in the same state (10)

the cells (i; j; k − 1) and (i; j; k + 1) are in the same state

In order to show the importance of the SLIC algorithm, we have reproduced the numerical
experiment reported in Reference [21] in three space dimensions, see Figure 8. Consider the
cube [0; 20]3, meshed into 20× 20× 20 cells. At initial time the liquid region is a block of
3× 7× 3 cells, then rotates 180 degrees, the centre of rotation being the point (11:5; 12:5; 11:5),
the rotation axis being Ox3. We have reported four experiments along the plane x3 = 11:5,
with several time steps. Clearly the SLIC algorithm reduces dramatically numerical di�usion
and is essential to the numerical model.

4.1.2. Reducing arti�cial compression: a decompression algorithm. The algorithm imple-
mented in order to reduce arti�cial compression is space dimension independent and is essen-
tially the same than the one presented in Reference [15]. In the absence of this decompression
algorithm, when the computed values of the volume fraction of liquid ’n

ijk are greater than
one, a fraction of the liquid contained in the cavity is lost. The decompression algorithm aims
at producing new values ’n

ijk which are bounded by zero and one.
At each time step, all the cells having value ’n

ijk greater than one (strictly) or between
zero and one (strictly) are sorted (using a standard quick sort algorithm) according to their
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Figure 8. SLIC algorithm. Rotation of a liquid block by 180 degrees. Black corresponds
to volume fraction of liquid one, white to volume fraction of liquid zero, grey to in-
termediate values. Top left: with SLIC, 11 times steps. Top right: with SLIC, 60 times
steps. Bottom left: with SLIC, 1686 times steps. Bottom right: without SLIC, 60 times steps.

value ’n
ijk . The cells having value ’n

ijk greater than one are called the dealer cells, whereas the
cells having value ’n

ijk between zero and one are called the receiver cells. The decompression
algorithm then consists in moving the volume fraction of liquid in excess in the dealer cells
to the receiver cells. In the case when all the receiver cells are full but some liquid is still
in excess in the dealer cells, then the amount of liquid in excess is stored in a dedicated
bu�er and is introduced at the next time step. Two-dimensional examples are reported in
Reference [15].

4.2. From cells to �nite elements

Once values ’n
ijk and v

n
ijk have been computed on the cells, values have to be extrapolated

at the nodes of the �nite element mesh. Then, the new liquid region will be set, and the
generalized Stokes problem (7) and (8) will be solved using tetrahedral �nite elements. For
any vertex P of the �nite element mesh let  P be the corresponding basis function (i.e. the
continuous, piecewise linear function having value one at P, zero at the other vertices). We
consider all the tetrahedrons K containing vertex P and all the cells (ijk) having centre of mass
Cijk contained in these tetrahedrons, see Figure 9 for a two-dimensional description. Then,
’n

P, the volume fraction of liquid at vertex P and time tn is computed using the following
formula:

’n
P=

∑
K

P∈K

∑
ijk

Cijk∈K

 P(Cijk)’n
ijk

∑
K

P∈K

∑
ijk

Cijk∈K

 P(Cijk)
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Figure 9. From cells to �nite elements. The value of the volume fraction of liquid at vertex P depends
on the values computed on the shaded cells.

The same kind of formula is used to obtain the predicted velocity vn−1=2 at the vertices of
the �nite element mesh.

4.3. Di�usion step

Once values of the velocity �eld vn−1=2 and of the volume fraction of liquid ’n are available
at the vertices of the �nite element mesh, the liquid region is de�ned as follows. An element
of the mesh is said to be liquid if (at least) one of its vertices P has a value ’n

P¿0:5. The
computational domain �n used for solving (7) and (8) is then de�ned to be the union of all
liquid elements.
Note that a velocity has to be guessed for each node having ’n

P=0, but belonging to a
liquid element. The velocity is then clearly computed from the values of the neighbouring
liquid nodes. Also note that, if a cell has a value ’n

ijk greater than zero, but belongs to a �nite
element which is not liquid, then it is eliminated from the computations and a small amount
of liquid is lost. When this situation occurs, the corresponding amount of liquid is stored in a
dedicated bu�er and is introduced at the next time step, during the decompression algorithm.
Let us now turn to the �nite element techniques used for solving (7) and (8), the bound-

ary conditions being those described in Section 2.2 (Dirichlet, slip, or zero force boundary
conditions). The velocity and pressure are continuous, piecewise linear and a stabilized weak
formulation is used [24–26], namely

∫
�n

vn − vn−1=2
�n

w dx + 2�
∫
�n
D(vn) :D(w) dx −

∫
�n

pn divw dx − �g
∫
�n
w dx

−
∫
�n
div unq dx − ∑

K⊂�n
�K

∫
K

(
vn − vn−1=2

�n
+∇pn − �g

)
· ∇q dx=0
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Here w and q are the velocity and pressure test functions, compatible with the boundary
conditions. The stability coe�cient �K is de�ned on each tetrahedron K as a function of the
local Reynolds number ReK =�|vn−1=2|∞hK=2� as follows:

�K =
1
12

h2K
�

if ReK63

=
1

4ReK
h2K
�

if ReK¿3

Note that the stabilizing terms in the weak formulation are added in a consistent manner,
divD(vn) being zero in each tetrahedron since the velocity is piecewise linear.
The degrees of freedom are the three velocity components and pressure at each vertex of

the �nite element mesh. This �nite element procedure is implicit and O(H 2 + �) convergent
(in the L2 norm), H being the �nite elements spacing and � the greatest time step. At the
moment, all the degrees of freedom are stored in a single matrix (monolithic scheme) and
the linear system is solved using a BICGSTAB algorithm and a classical incomplete LU pre-
conditioner. We are looking forward to using decoupling methods in order to reduce memory
requirements, see References [27, 28] for a general discussion. Theoretical and numerical in-
vestigations have already been published for a time dependent Stokes problem [29]. Both the
matrix-pressure method and Incomplete LU factorizations [30, 31] are possible candidates.
Finally, once the new velocity �eld vn is computed at the vertices of the �nite element

mesh, values are interpolated at the centre of the cells (ijk). A classical Lagrange interpolation
formula is used, namely

vnijk =
∑
P

 P(Cijk)vnP

where P are the mesh vertices,  P the corresponding basis functions, vnP the corresponding
velocities, and Cijk is the cell centre of mass.

4.4. A hierarchic data structure

In number of industrial mould �lling applications, the shape of the cavity containing the liquid
(the mould, an engine carter for instance) is complex. Therefore, a special data structure has
been implemented in order to reduce the memory requirements used to store the cell data. An
example is proposed in Figure 10. The cavity containing the liquid is meshed into tetrahedrons.
Without any particular cells data structure, a great number of cells would be stored in the
memory without being never used. The data structure we have adopted uses three levels to
de�ne the cells. At the coarsest level, the so-called window level, the cavity is meshed into
blocks, which are glued together. Each window is then subdivided into cubes, this intermediate
level is called the block level. Finally, each block is cut into smaller cubes, namely the
cells (ijk).
When a block is free of liquid (empty), it is switched o�, that is to say the mem-

ory corresponding to the cells is not allocated. When liquid enters a block, the block is
switched on, that is to say the memory corresponding to the cells is allocated. This data
structure was already used in industrial applications pertaining to dendritic solidi�cation [32].
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Figure 10. The hierarchical Window-block-Cell data structure used to implement the cells advection.

A graphical interface has been included in the CalcoSoftTM software in order to simplify the
handling of this hierarchic data structure.

5. NUMERICAL RESULTS

5.1. Validation: comparison with two-dimensional computations

In order to validate the three-dimensional model, comparisons with the two-dimensional re-
sults of Reference [15] have been performed, see also Reference [23]. Only two compar-
isons are presented here, namely the disk with core test case and the broken dam prob-
lem. All the computations below were performed on a PC with Intel Pentium III 866 Mhz
CPU and 512 Mb Memory. The results were post-processed with the CalcoSoftTM

software.
The disk with core: Water is injected in a disk with a circular obstacle, lying between

two horizontal planes. Experimental results are taken from Reference [33]. The dimensions
are 0:14× 0:16 m, water is entering at velocity 18 m=s, and the density and viscosity are
�=1000kg=m3, �=0:01kg=(ms). The 2D mesh has 1879 vertices and 3556 triangles. The 3D
mesh is built from the 2D one by elevation, using 5 horizontal layers; it has 9395 vertices
and 42672 tetrahedrons. The hierarchical data structure for the cells is made out of a single
window containing 54× 63× 4 blocks, each block having 4× 4× 4 cells, so that the �nite
element mesh spacing H is roughly three times the cell spacing h. The simulation required
180 time steps to reach the �nal time (18 ms), the CPU time for the 3D computation was
45min. In Figure 11 we have reported the liquid region at several times. Clearly the agreement
between computations and experiments is very good.
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Figure 11. Disk with core: position of the liquid region at time 0, 8.8, 11.8 and 16:2 ms. Left: 2D
numerical results, middle: 3D numerical results, right: experimental results [33].
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Figure 12. The experimental set-up of the broken dam problem [34].

Figure 13. The broken dam problem. Dimensionless position x=L of the liquid front along the bottom
of the cavity against dimensionless time t

√
2g=L. Left: 2D results, right: 3D results. The coarsest mesh

is Ma1, L denotes the width of the initial liquid region.

The broken dam problem: A block of water is initially kept in a cavity using a thin paper
�lm. At time zero, the paper �lm is removed and water is free to move. Experimental results
are reported in Reference [34], the experimental setup is reproduced in Figure 12. Three �nite
element meshes have been used to check convergence. For each mesh, the number of cells is
such that the �nite element mesh spacing H is roughly three times the cell spacing h. Also,
three di�erent time steps were used, the largest being 0:03 s. In Figure 13, we have reported
the position of the free surface at several times. Again, the agreement between experimental
values, 2D and 3D computations is excellent.

5.2. Three-dimensional computations

We are now in position to present three-dimensional computations involving complex shapes
of the liquid region. In the �rst test case, namely the breakage of a dam in a con�ned cavity,
the shape of the cavity is simple but the liquid region becomes complex. The second test case
corresponds to the �lling of a mould with �ve arms.
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Figure 14. Breakage of a dam in a con�ned cavity.

The broken dam problem in a con�ned cavity: We consider a cavity with size 0:09× 0:045×
0:045 m and place a block of water with size 0:03× 0:02× 0:04 m along one of the vertical
edges. The �nite element mesh is obtained by cutting the cavity into 45× 25× 25 bricks, then
cutting each brick in 6 tetrahedrons. A single window is used, with 45× 23× 23 blocks made
out of 5× 5× 5 cells. At initial time water is free to move under action of gravity; it then
splashes against the walls of the cavity. The �nal time is 0:5 s and 500 time steps were used.
Numerical results are reported in Figure 14. The CPU time was 277 min.
Filling of a mould with �ve arms: We consider a mould with �ve arms, see Figures 15

and 16. Water is entering downwards in a vertical tube at speed 2:2m=s. The mesh has 3565
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Figure 15. Filling of a mould with �ve arms: position of the free surface between time 0 and 0:5 s.

Figure 16. Filling of a mould with �ve arms: top view of the interface
before it hits the end of the �ve arms.

vertices and 14962 tetrahedrons. As reported in Figure 17, seven windows and 31568 blocks
were used to reduce memory requirements, each bloc having 5× 5× 5 cells. The �nal time
is 0:5 s and 500 time steps were used. The CPU time was 141 min. For this test case, the
cells cannot be aligned with the �ve arms simultaneously and the goal is to check that �lling
occurs at the same speed in all arms.
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Figure 17. Filling of a mould with �ve arms: description of the seven windows.

6. CONCLUSION AND PERSPECTIVES

A three-dimensional free surface �ow solver has been presented. The volume fraction of liquid
is used to describe the interface. A splitting algorithm allows di�usion and convection phe-
nomena to be decoupled. Di�usion is solved with �nite elements using an unstructured mesh
of tetrahedrons, whereas convection is solved on a grid made out of small cubic cells. Nu-
merical di�usion and compression is minimized using appropriate post-processing algorithms.
A hierarchic data structure allows complex geometries to be handled.
Numerical results show the e�ciency of this approach. This three-dimensional free surface

�ow solver has been incorporated in a commercial code, the CalcoSoftTM software, and is
used for mould �lling simulations.
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